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ARTICLE INFO  The subject of the paper is a simply supported standard wide-flange H-beam. Cross sections 

of this beam is analytically described as a three-layer structure. The shear effect in its suc-

cessive layers is taking into account with consideration of the classical shear stress formula 

called Zhuravsky shear stress. Based on Hamilton’s principle, two differential equations of 

motion are obtained. These equations are analytically solved and the fundamental natural 

frequency of flexural vibration for this beam is derived. Exemplary calculations are carried 

out for selected five I-beams. 
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1. Introduction  

The theory of the shear effect occurring in struc-

tures, initiated by S.P. Timoshenko in 1921, is inten-

sively improved today. Aghababaei and Reddy [1] 

improved the earlier one from 1984 third-order shear 

deformation plate theory and analytically studied the 

bending and free vibrations of a simply supported 

rectangular plate. Ghugal and Sharma [3] analyzed 

static bending and free flexural vibration problems of 

thick isotropic beams with consideration of a hyper-

bolic shear deformation theory. Reddy [10] reformu-

lated the classical and shear deformation beam and 

plate theories taking into account the Eringen nonlocal 

differential constitutive relations and the von Kàrmàn 

nonlinear strains. Thai and Vo [14] developed various 

higher-order shear deformation beam theories due to 

bending and free vibration of functionally graded 

beams. Akgöz and Civalek [2] presented a new size-

dependent higher-order shear deformation beam mod-

el and analytically studied the bending and free vibra-

tion of simply supported micro-beams. Sawant and 

Dahake [12] analytically described the cantilever 

beam bending with consideration of the a new hyper-

bolic shear deformation theory. Xiang [16] analytical-

ly studied the free vibration of functionally graded 

beams using a n-order shear deformation theory. Mahi 

et al. [8] presented the bending and free vibration 

analysis of isotropic, functionally graded, sandwich 

and laminated composite plates taking into account  

a new hyperbolic shear deformation theory. Nguyen et 

al. [9] proposed a new higher-order shear deformation 

theory and applied it to the analysis of buckling and 

free vibration problems of isotropic and functionally 

graded sandwich beams. Sobhy [14] applied a new 

accurate four-variable shear deformation theory to the 

analytically studied the hygrothermal buckling and 

vibration of functionally graded sandwich plates rest-

ing on Winkler–Pasternak elastic foundations. Thai et 

al. [15] proposed a simple shear deformation theory 

and applied it to the static bending and free vibration 

analytically studied of isotropic nanobeams. Mag-

nucki [5] presented analytical models of the sandwich 

beam and I-beam with consideration of the shear ef-

fect, and also static bending studies of these beams. 

Magnucki et al. [6] Magnucki et al. [6] elaborated the 

nonlinear shear deformation theory of a beam based 

on the Zhuravsky shear stress formula and determined 
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the deflections of sample beams. Ren et al. [11] pro-

posed a new general third-order zigzag model of lam-

inated composite beams and determined analytically 

the shear stress distribution for example beams. Mag-

nucki [7] presented the individual shear deformation 

theory and its application in the bending analysis of 

homogeneous, sandwich and FGM beams. Guo and 

Shi [4] analyzed the free vibration of laminated com-

posite plates taking into account a refined third-order 

shear deformation theory.  

The subject of the paper is a simply supported 

standard wide-flange H-beam of length L and depth h 

(Fig. 1).  

 

Fig. 1. Scheme of the beam  

The cross section of this beam is shown in Fig.2.  

 

Fig. 2. Scheme of the cross section  

Sizes of this cross section are as follows: b – 

width, hf – flanges thicknesses, hw – web depth. How-

ever, the dimensionless sizes are as follows: χw = hw/h, 

β0 = b0/b and the dimensionless coordinate η = y/h.  

The main goal of the work is to develop the analyt-

ical model of this beam and determine its fundamental 

natural frequency taking into account the shear effect.  

2. Analytical model the H-beam 

Taking into account the paper [5], the structure of 

the wide-flange H-beam is analogous to a sandwich 

beam. Therefore, the following three layers are distin-

guished (Fig.2):  

 the upper flange (–1/2 ≤ η ≤ –χw/2)  

 b(η) = b = const  (1) 

 the web (–χw/2 ≤ η ≤ χw/2)  

 b(η) = bfw(η)  (2) 

where  

 fw(η) = β0 + (2αr − β0)tann (
π

2

η

χw
)  (3) 

and: n – even exponent, αr – dimensionless coefficient 

 the lower flange (χw/2 ≤ η ≤ 1/2)  

 b(η) = b = const  (4) 

The deformation of a planar cross section of this 

beam after bending is graphical presented in Fig. 3.  

 

Fig. 3. The deformation scheme of a planar cross section  

Thus, the displacements based on the above 

scheme (Fig. 3) in successive layers are as follows: 

 the upper flange (–1/2 ≤ η ≤ –χw/2)  

 u(uf)(x, η, t) = −h [η
∂v

∂x
− fd

(uf)(η)ψs(x, t)]  (5) 

 the web (–χw/2 ≤η≤ χw/2)  

 u(w)(x, η, t) = −h [η
∂v

∂x
− fd

(w)(η)ψs(x, t)]  (6) 

 the lower flange (χw/2 ≤ η ≤ 1/2)  

 u(lf)(x, η, t) = −h [η
∂v

∂x
− fd

(lf)
ψs(η)(x, t)]  (7) 

where: v(x,t) – deflection, ψs(x,t) = us(x,t)/h – dimen-

sionless longitudinal displacement function, fd
(uf)

(η), 

fd
(w)(η), fd

(lf)(η) – dimensionless deformation func-

tions, t – time.  

Consequently, the strains and stresses – Hooke’s 

law in these layers are in the following form:  

 the upper flange (–1/2 ≤ η ≤ –χw/2)  

 εx
(uf)

(x, η, t) = −h [η
∂2v

∂x2 − fd
(uf)

(η)
∂ψs

∂x
]  (8) 

 γxy
(uf)(x, η, t) =

dfd
(uf)

dη
ψs(x, t)  (9) 

 σx
(uf)(x, η, t) = Eεx

(uf)(x, η, t) (10) 

 τxy
(uf)(x, η, t) =

E

2(1+ν)
γ

xy

(uf)

(x, η, t) (11) 

 the web (–χw/2 ≤ η ≤ χw/2)  

 εx
(w)(x, η, t) = −h [η

∂2v

∂x2 − fd
(w)(η)

∂ψs

∂x
]  (12) 
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 γxy
(w)(x, η, t) =

dfd
(w)

dη
ψs(x, t)  (13) 

 σx
(w)

(x, η, t) = Eεx
(w)

(x, η, t) (14) 

 τxy
(w)(x, η, t) =

E

2(1+ν)
γ

xy

(w)

(x, η, t) (15) 

 the lower flange (χw/2 ≤ η ≤ 1/2)  

 εx
(lf)

(x, η, t) = −h [η
∂2v

∂x2 − fd
(lf)

(η)
∂ψs

∂x
]  (16) 

 γxy
(lf)

(x, η, t) =
dfd

(lf)

dη
ψs(x, t)  (17) 

 σx
(lf)

(x, η, t) = Eεx
(lf)

(x, η, t) (18) 

 τxy
(lf)(x, η, t) =

E

2(1+ν)
γ

xy

(lf)

(x, η, t) (19) 

where: E – Young’s modulus, ν  – Poisson ratio.  

Taking into account the papers Magnucki et al. [6] 

and Magnucki [7], the unknown dimensionless de-

formation functions fd
(uf)

(η), fd
(w)

(η), fd
(lf)

(η) are 

determined with consideration of the classical shear 

stress formula, called Zhuravsky shear stress, in the 

form  

 τxy
(Cl)(x, y) =

Sz(y)

b(y)

T(x)

Jz
 (20) 

where: Sz(y) = S̅z(η)bh2 – first moment of the cross 

section part about the z-axis, T(x) – transverse-shear 

force, Jz = Jz̅bh3 – inertia moment of the cross section 

about the z-axis, Jz̅. – dimensionless inertia moment.  

Therefore, this formula in the dimensionless coor-

dinate η is as follows  

 τxy
(Cl)(x, η) =

S̅z(η)

b(η)

T(x)

hJ̅
z

 (21) 

The dimensionless first moments of successive 

layers of this beam are as follows:  

 the upper flange (–1/2 ≤ η ≤ –χw/2)  

 

Fig. 4. The hatchet area of the beam cross section selected part  

The dimensionless first moment of the hatched ar-

ea (Fig. 4) is as follows  

 S̅z
(uf)(η) =

1

8
(1 − 4η2) (22) 

 the web (–χw/2 ≤ η ≤ χw/2)  

 

Fig. 5. The hatchet area of the beam cross section selected part  

The dimensionless first moment of the hatched ar-

ea (Fig. 5) is as follows  

 S̅z
(w)(η) =

1

8
(1 − χw

2 ) − Jw(η) (23) 

where Jw(η) = ∫ fw(η1)dη1
η

−
χw

2

 

 the lower flange (χw/2 ≤ η ≤ 1/2)  

 

Fig. 6. The hatchet area of the beam cross section selected part  

The dimensionless first moment of the hatched ar-

ea (Fig.6) is as follows  

 S̅z
(lf)(η) =

1

8
(1 − 4η2) (24) 

Equating shear stresses (11), (15) and (19) to the 

classical shear stress formula (21), taking into account 

dimensionless first moments (22), (23) and (24), after 

simply transformation one obtains the unknown di-

mensionless deformation functions of successive lay-

ers in the following form:  

 the upper flange (–1/2 ≤ η ≤ –χw/2)  

 fd
(uf)(η) = −Cf +

1

24
(3 − 4η2)η (25) 

 the web (–χw/2 ≤ η ≤ χw/2)  

 fd
(w)(η) =

1

8
∫

1−χw
2 −8Jw

fw(η)
dη (26) 

 the lower flange (χw/2 ≤ η ≤ 1/2)  

 fd
(lf)(η) = Cf +

1

24
(3 − 4η2)η (27) 

where Cf = −
1

48
(3 − χw

2 )χw +
1

8
∫

1−χw
2 −8Jw

fw(η)
dη

χw
2

0
 



 

Free flexural vibrations of standard wide-flange H-beams with consideration of the shear effect 

6 RAIL VEHICLES/POJAZDY SZYNOWE X, 0000 

The elastic strain energy of the beam  

 Uε,γ =  
1

2
Ebh ∫ {Φε,γ

(uf)(x, t) + Φε,γ
(w)(x, t) + (x, t)}dx

L

0
 (28) 

where:  

 Φε,γ
(uf)(x, t) =

∫ {[εx
(uf)(x, η, t)]

2
+  

1

2(1+ν)
[γxy

(uf)(x, η, t)]
2

} dη
−χw 2⁄

−1 2⁄
 (29) 

 Φε,γ
(w)(x, t) =

∫ {[εx
(w)(x, η, t)]

2
+  

1

2(1+ν)
[γxy

(w)(x, η, t)]
2

} dη
χw 2⁄

−χw 2⁄
 (30) 

 Φε,γ
(lf)(x, t) =

∫ {[εx
(lf)(x, η, t)]

2
+  

1

2(1+ν)
[γxy

(lf)(x, η, t)]
2

} dη
1 2⁄

χw 2⁄
 (31) 

The kinetic energy  

 UK =
1

2
ϱbA̅bh ∫ (

∂v

∂t
)

2

dx
L

0
   (32) 

where: A̅ = A bh⁄  – dimensionless area cross section, 

ϱb – mass density of the beam. 

Based on the Hamilton’s principle  

 δ ∫ (UK − Uε,γ)
t2

t1
dt = 0   (33) 

two differential equations of motion are obtained in 

the following form:  

 ϱbA̅
∂2v

∂t2 + Eh2 (Jz̅
∂4v

∂x4 − Cvψ
∂3ψs

∂x3 ) = 0   (34) 

 Cvψ
∂3v

∂x3 − Cψψ
∂2ψs

∂x2 + Cψ
ψs(x,t)

h2 = 0   (35) 

where: dimensionless coefficients  

Jz̅ =
1

12
(1 − χw

3 ) + 2 ∫ η2fw(η)dη
χw 2⁄

0

 

Cvψ =
1

480
[120(1 − χw

2 )Cf + 4 − 5χw
3 + χw

5 ]

+ 2 ∫ ηfd
(w)(η)fw(η)dη

χw 2⁄

0

 

Cψψ = 2 ∫ [fd
(w)(η)]

2
fw(η)dη

χw 2⁄

0

+ 2 ∫ [fd
(lf)(η)]

2
dη

1 2⁄

χw 2⁄

 

Cψ =
1

64(1 + ν)
{

1

30
(8 − 15χw + 10χw

3 − 3χw
5 )

+ ∫
[1 − χw

2 − 8Jw(η)]2

fw(η)
dη

χw 2⁄

0

} 

3. Analytical determination of the fundamental 

natural frequency  

Two differential equations of motion (34) and (35) 

for the free flexural vibration of the simply supported 

H-beam are approximately solved with the use of two 

assumed functions: 

 v(x, t) = va(t)sin (π
x

L
) (36) 

 ψs(x, t) = ψsa(t)cos (π
x

L
) (37) 

where: va(t), ψsa(t) – functions of the time t.  

Substituting these functions (36) and (37) into 

equations (34) and (35), after simply transformation, 

one obtains the following differential equation  

 
∂2v

∂t2 + (1 − Cse)
π4J̅zE

λ2L2A̅ϱb
va(t) = 0   (38) 

where: the shear coefficient  

 Cse =
π2

π2Cψψ+λ2Cψ
 
Cvψ

2

J̅z
  (39) 

and λ = L/h – the relative length of the beam.  

The equation (38) is also approximately solved 

with the use of the function  

 va(t) = vosin(𝜔𝑡) (40) 

where: vo [mm] – the amplitude of the flexural vibra-

tion, and ω [1/s] – the fundamental natural frequency. 

Substituting this function into the equation (38) 

one obtains the fundamental natural frequency in the 

following form  

 fz =
ω

2π
=

π 106

2λ2h
√(1 − Cse)

J̅z

A̅

E

ϱb
   [Hz]   (41) 

where dimensions of quantities: E [MPa], ρb [kg/m
3
] 

and length h [mm].  

The detailed calculation results for sample standard 

wide-flange H-beams of following data: λ = 20, ν = 

0.3, E = 2 10
5
 MPa, ρb = 7850 kg/m

3
 are specified in 

Table 1. 
 

Table 1. The selected results of the detailed calculation  

Beam  H-100  H-200  H-300  

A̅  0.26  0.195224  0.16557  

Jz̅  0.045  0.035624  0.031073  

β0  0.060  0.045  0.036667  

αr  0.219  0.126  0.1177  

χw  0.80  0.85  0.873333  

n  16  16  16  

Cse  0.0432860  0.0460501  0.0489381  

fz [Hz] 80.660  41.350  27.914  

 

The values of the even exponent n and dimension-

less coefficient αr are determined taking into account 

the values of the dimensionless area cross section A̅ 

and the dimensionless inertia moment Jz̅.  

4. Conclusions 

Taking into account the analytically determined 

fundamental natural frequency (41) of the H-beam, 

with consideration of the shear effect, the following 

comments formulated: 
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a) the shear effect (expressed by the coefficient Cse) 

reduced the fundamental natural frequency 

b) the value of this coefficient (39) decreases as the 

relative length of the beam λ increases  

c) the values of this coefficient Cse for sample stand-

ard H-beams (Table 1) are less than 5%, thus, the 

values of the fundamental natural frequency are 

reduced by 2.5% 

d) the calculation of the fundamental natural frequen-

cies for these beams in the engineering practice can 

be carried out without the shear effect (Cse = 0) – 

the classical  formula (41).  
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