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ARTICLE INFO  The article presents selected results of research in the area of reducing the risk of defects in 

railway infrastructure and traffic control devices. The first part of the article will discuss 

selected topics used in a defectoscope car for automated ultrasonic rail inspections related 

to the identification of joints and flaws. A method based on the identification of joints and 

flaws using a neural network will be presented. The second part of the article will cover 

research on the automatic collection of diagnostic data from railway traffic control devices. 

The solutions presented concern a simulator of railway traffic control device malfunctions, 

from which data is extracted to populate a database of malfunctions and then used in the 
inference process. The article will present partial results of research on both systems. 
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1. Introduction 

For many years, ultrasonic testing of rails has been 

one of the non-destructive testing methods used to 

detect internal material defects such as cracks or in-

clusions [1–3, 6, 7]. From the point of view of rail 

transportation, these tests are extremely important for 

ensuring rail safety due to their complexity. Automat-

ic methods of inspecting rails have become increas-

ingly popular in recent years due to their ability to 

monitor large sections of rail track quickly and effi-

ciently [11, 13]. They also significantly assist workers 

responsible for maintaining and inspecting rail infra-

structure. Automated rail inspection systems not only 

increase the safety of rail traffic, but also significantly 

reduce the costs associated with the need for manual 

track inspection. Combined with modern data analysis 

technologies such as artificial intelligence and ma-

chine learning, they can also predict potential prob-

lems before they become a serious threat, as will be 

shown later in the article. The article describes the 

application of signal processing using neural networks 

to recognize patterns in measurement data from  

 

 

a defectoscope wagon examining railroad rails using 

ultrasonic methods. This has also been described in 

publications [15, 16]. The wagon's measurement appa-

ratus uses digital signal processing, enabling the re-

cording of a large data volume. This creates the need 

to design good automatic evaluation procedures. By 

their nature, they must have the character of statistical 

signal estymation. Neural networks enable the con-

struction of such procedures. On the other hand, the 

introduction of automatic diagnostic systems into rail 

traffic control equipment significantly improves oper-

ational efficiency, reduces the risk of failures and 

associated delays, and increases overall rail traffic 

safety [4, 10, 12, 14, 17]. As technology advances, 

such systems are becoming more sophisticated and 

capable of independently predicting and responding 

can be said in real time to potential problems. Modern 

automatic diagnostic systems are essential for moni-

toring and detecting any malfunctions in these devic-

es. Therefore, in the second part of the article will be 

presented one of the elements of the research work 

SADEK system, which is an important element of 

collecting data on emergency situations. 
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2. Methodology of data analysis in the defectoscope 

wagon 

The results of the research presented here have 

been implemented in the design of a defectoscope 

wagon operating on the PKP network (Fig. 1).  

 

Fig. 1. Defectoscope wagon [18] 

2.1. Pre-processing of data used, methodology  

of experiments 

The results of measurements made by the defecto-

scope wagon have been used for the experiments.  

A selection was made of the part of the measurements 

that had already been evaluated by the operator, com-

ing from a reference section in which artificial models 

of typical defects found in railroad tracks were creat-

ed. This section is used to calibrate the apparatus be-

fore carrying out the measurements. Detecting artifi-

cial defects in the reference section is a guarantee of 

detecting real defects on the track. In accordance with 

the same philosophy, it was considered that the cor-

rect recognition of patterns in the measurement sig-

nals from the calibration section proves the suitability 

of this technology for real measurement conditions. 

The available records of calibration tests included test 

runs conducted under various conditions, in particular, 

with different levels of head wear, when driving at 

different speeds and also with different road pulser 

constants (and therefore with different measurement 

flux densities). The arrangement of the heads is shown 

in Fig. 2. 

 

Fig. 2. Arrangement of measuring heads 

 

As mentioned, this data is processed by the opera-

tor and equipped with a classification that determines 

whether the corresponding portion of the signal repre-

sents an image of a dangerous defect, a defect to be 

observed or a connector. The expert knowledge neces-

sary to perform supervised network learning is there-

fore available. Attempts have been made to use differ-

ent types of networks, including a simple layered net-

work implementing static pattern classification. In 

order to prepare the appropriate data sets (training and 

testing), additional preprocessing tools have been 

prepared). The functional scope of these tools in-

cludes: 

 selection of source measurements to be included in 

the dataset (measurement time, instrument chan-

nel) 

 determination of the types of patterns to be placed 

in the dataset (non-safety defect, defect to be ob-

served, connector) 

 determining the subset of measurements to be 

placed in the dataset (e.g., only defect amplitude 

information, or also additionally the results of de-

fect position measurements, etc.) 

 windowing of measurement signals by specifying 

the length of the window and also the minimum 

length of the fragment of the original pattern, cov-

ered by the window 

 adding noise to the signal with a Gaussian distribu-

tion, with a preset mean value and variance 

 generation of data sets (including sets containing 

the expected values of the output of the classifier 

in a format acceptable to the software implement-

ing neural network training) 

 visual inspection of the generated datasets, to 

check the correctness of the operation carried out. 

The need to carry out the various operations men-

tioned above resulted from the assumed methodology 

of the experiments. 

As a task to be carried out, it was accepted to rec-

ognize the pattern of the measurement signal formed 

by the screw rail connector, in particular to distinguish 

it from other signal patterns, such as the defect pat-

tern. It was limited to signals coming from normal 

heads (two channels of the apparatus). The connector 

signal also appears in channels with 45° angle heads, 

but the pattern recorded by these heads is different 

from the signal pattern from normal heads, so we were 

limited to the latter only. Success in recognizing the 

joint pattern in normal heads means that the neural 

network is able to perform an analogous operation for 

another signal pattern, also for the signal coming from 

another type of heads. In addition, the task of correct-

ly identifying a connector pattern includes the prob-

lem of distinguishing it from the entire set of patterns 
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induced in the signal by defects. Thus, we have a situ-

ation anyway, where it is necessary to discriminate 

between whole families of patterns. 

In addition to experiments involving recognition 

on the basis of the full information: amplitude and 

position of the defect, it was decided to make much 

more difficult attempts to discriminate only on the 

basis of the amplitude signal. The position of the de-

fect is a very characteristic parameter for the connect-

or – all the holes lie at one depth. If a neural network 

can create a classifier, using mainly position infor-

mation for discrimination, this only speaks in favor of 

this method. It is good when a flexible procedure ca-

pable of creating models of high complexity con-

structs a simple model, if it has the ability to do so. 

However, extending the conclusions of the experi-

ments to other, less obvious cases of signal patterns 

required testing the method under more difficult con-

ditions. Distinguishing a connector signal from a de-

fect signal without position information can be diffi-

cult even for a human. So this is a very demanding 

test for an artificial inference system. Besides, an eco-

nomic aspect is included. Reducing the data stream 

needed to perform the necessary adjudication always 

entails savings. In a related line, an additional compli-

cation is assumed – the omission of information from 

the way counter in the classification. In other words, 

information about the exact spatial relationships be-

tween individual pattern samples is omitted from the 

training data. Only the natural ordering of the samples 

is saved, that is, the information on neighborhood and 

succession. Note that the wagon apparatus uses condi-

tional registration of measurements – only those 

measurements for which the amplitude exceeds the 

monitor's discrimination threshold are registered. This 

means that adjacent samples of measurements can 

represent arbitrarily distant track points. Referring 

again to human intuition, it should be said that this 

makes it much more difficult to recognize the joint 

pattern. This is illustrated in Fig. 2, which shows the 

joint patterns at full registration and at conditional 

registration. For comparison, the defect pattern at 

conditional registration is also shown (Fig. 3). It can 

be seen that apparently, a neural network capable of 

discriminating patterns must recognize subtle relation-

ships between samples due to their proximity and 

succession.  

To evaluate the quality of the created classifier, 

generalization estimation was adopted. Good general-

ization is the real goal of the neural network learning 

process. A good classifier should not so much be 

faithful to the training data – this can almost always 

be achieved by increasing the complexity of the model 

accordingly. The real test is good classification accu-

racy for data that did not participate in the learning 

process. On the ground of machine learning, generali-

zation error is defined as the expected value of the 

error on all possible data sets of a certain size and the 

same probability density distribution as the entire 

input population. In practice, this estimation is carried 

out by checking the classifier on an independent test 

set, provided that it is sufficiently numerous. The most 

common rule of thumb is to separate from the set of 

all data 30% of the elements for testing and 70% of 

the elements for the training set. The quality of the 

constructed classifier is evaluated as the error on the 

testing set. 

 

a) 

 

b) 

 

c) 

 

Fig. 3. Signal patterns a) connectors with preservation of spatial 

relations (full registration), b) connectors with conditional regis-

tration, c) dangerous defect with conditional registration. All 

 characteristics show amplitude as a function of time 

 

Neuro-Solutions 4.0 software, which uses an ob-

ject-oriented approach to neural network modeling, 

was used for the simulation. This package is a very 

complex system in which most neural network archi-

tectures can be simulated. 

2.2. Recognizing the joint using static reference  

classification 

In this experiment, an attempt was made to teach a 

layered neural network for connector signal recogni-

tion based on 30-sample signal fragments, including 

images of connectors and defects. The window lengths 

were selected based on a histogram of the lengths of 

examples derived from the raw data, generated using 

one of the tool programs described earlier from meas-

urements collected on a sample track with artificial 

defects. These histograms are shown in Fig. 4. 

Most of the connector patterns range in length 

from 8 to 29 samples. By the way, this scatter shows 

how varied the connectors are recorded by the ultra-

sonic apparatus (change in the quality of coupling of 

the heads to the rail). All connectors with lengths in 

this range were accepted for windowing. As the min-

imum length of the pattern in the window, the value of 

8 was taken. From 129 examples of connectors from 

the original data, 5128 windows were thus created, for 

which the classifier should give the answer "Connect-

or" (encoded in the file with information on expected 
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values as the value 1). As for the patterns of defects, 

most of the histogram mass also falls within a window 

of length 30, but in this case the minimum accepted 

defect length was taken to be 1. The windowing thus 

resulted in 21749 examples for which the classifier 

should give a "Not Connected" response (encoded as 

zero). Each sample in the windowing is a two-

dimensional vector whose components describe the 

amplitude expressed on one byte and the position of 

the defect expressed on 1 byte. 

 

a)  

 

b)  

 

 

Fig. 4. Histograms of the length of defect and joint patterns in the 

raw data: a) as a function of the defect pattern, b) as a function of 

 defect length 

 

The data sets were split in a 70–30% ratio, resulting 

in a total of 18814 examples in the training set and 

8063 examples in the testing set. A layered architecture 

with one hidden layer with five neurons was adopted.  

A learning algorithm called Delta-Bar-Delta – a varia-

tion of the back-propagation algorithm with complex 

learning rate adaptation heuristics – was used. 

Figure 5 shows an excerpt from the Neurosolutions 

program window showing the graphical design of the 

network and windows displaying the status of the 

learning process after 791 iterations. The largest clas-

sification error (both joints and defects) is on the order 

of 10%, on both the training and test sets. Given that 

the accuracy of ultrasonic testing, especially of such  

a nature as wagon testing, is not exorbitant (a sign of 

which is, for example, the scatter in the length of the 

connector signal patterns), this is a good result. 

Achieving such a result required 791 learning epochs. 

Continuing to teach from this point continues to re-

duce the error on the training set, but the error on the 

test set begins to increase, a clear sign of progressive 

overtraining of the network. 

 

Fig. 5. An excerpt from the screen of the Neurosolutions program, 

showing the designed architecture of the network, as well as win-

dows showing the averaged error on the training and testing sets, 

the classification matrices for both sets, and a window showing 

 the learning process 

 

The experiment was repeated for a reduced architec-

ture, including three neurons in the hidden layer. The 

classification matrix for this trial is given in Table 1. 

Table 1. Classification matrix for a network containing 3 neurons 

in the hidden layer; learning covered 672 epochs 

 Training collection Training collection 

 0 1 0 1 

0 89.381767 10.618233 95.595436 4.404568 

1 4.463670 95.536331 10.095098 89.904900 

 

The network learned to correctly recognize con-

nector patterns as easily as in the previous case. 

Next, an attempt was made to classify based only 

on the amplitude signal. Initial tests showed that the 

learning process for the same architectures as in pre-

vious experiments was very slow and did not produce 

good results. Therefore, an architecture capable of 

producing a strongly nonlinear processing function 

was used – a network with two hidden layers, with 15 

neurons in the first hidden layer and 5 in the second. 

The computational effort involved in learning such  

a network is much greater. Nevertheless, the results 

achieved are not much better than for small networks. 

Table 2 gives the classification matrix for this case 

after conducting 12600 learning epochs. 

Table 2. Classification matrix for networks with two hidden layers 

(15 and 5 neurons), learned for 12600 epochs 

 Training collection Training collection 

 0 1 0 1 

0 35.197552 64.802452 39.415585 60.584415 

1 5.243790 94.756210 11.096434 88.903564 
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From Table 2, it can be seen that the network tends 

to classify everything as a joint. It should be noted 

that a classification efficiency of 40% (column sum of 

0) is worse than a blind hit, which gives an expected 

error value of 50% with dichotomous discrimination. 

Thus, layered networks performing static pattern clas-

sification easily perform pattern recognition with full 

amplitude and position information, but completely 

fail to deal with the issue of recognition based on am-

plitude information alone. 

3. SADEK system (System for performance data 

acquisition and reliability analysis of railway  

automatic systems) 

The Faculty of Control Systems and Electronics at 

the University of Radom in Radom, thanks to the co-

operation with Alstom ZWUS Sp. z o.o. Poland S.A. 

Katowice, Zakłady Automatyki KOMBUD from Ra-

dom and Scheidt & Bachmann Polska Sp. z o.o. com-

pany enriched its laboratory base with modern and 

unique in Europe laboratories designated for technical 

and functional testing of essential systems and devices 

of railroad traffic control. They gathered models of 

basic signaling systems and devices, currently pro-

duced by the above-mentioned companies, used on 

modernized railroad lines. All laboratory stations cor-

respond to real railroad traffic control systems in op-

eration on Polish and other railroads. The extensive 

infrastructure made the SADEK project possible. 

 

Fig. 6. Block diagram of SADEK system 

 

3.1. Implementation of the fault simulator  

for the SADEK system 

Due to the inability to obtain operational data,  

a damage simulator based on manual fault generation 

(Fig. 7) and an automaton described below was real-

ized as part of one of the project stages. 

 

Fig. 7. Manual SSP system fault simulator 

 

The main task carried out by the automatic fault 

simulator is to generate random events according to 

the assumed distribution, resulting from the analysis 

of real data carried out earlier. In addition, it is envis-

aged that the simulator will cooperate with the rail 

systems using the proposed data exchange protocol [5, 

8]. Therefore, the simulator software for damage sim-

ulator of railway equipment consists of two separate 

tools, namely: "Damage Simulator–Server" and 

"Damage Simulator–Client". It was assumed that the 

server can acquire data from multiple clients using 

TCP/IP protocol. To ensure security, the information 

exchanged between the client and the server is en-

crypted using AES block cipher. In addition, each 

component of this system has the ability to edit data 

manually. The structure of the fault simulator system 

is shown in Fig. 8. 

 

Fig. 8. Block structure of the event simulation system (own devel-

opment) 

 



 

Selected aspects of the diagnostic process in rail transport 

8 RAIL VEHICLES/POJAZDY SZYNOWE 2023;3-4 

3.2. Software "Fault Simulator–Server” 

The "Damage Simulator–Server" software, called 

the server for short, is the main component of the 

damage simulation system. Parameterization is the 

first activity to be carried out after starting the server. 

This activity includes, among other things, parameter-

ization of access to the MS SQL database, including 

definition: 

 provider 

 user 

 password 

 database server IP address 

 database server port 

 database name. 

Other parameters that need to be defined are the 

TCP/IP server port, information about sending "ech-

oes" to clients when messages are received, and en-

cryption parameters, including password, key length 

and encryption mode. Parameters related to data en-

cryption must match in the client and server. After 

parameterization, select the "Apply" button. The pa-

rameters will be saved in the encrypted file and you 

will not need to set them when you run the software 

again. An example screen with the "Parameters" tab 

active is shown in Fig. 9. 

 

Fig. 9. Parameterization of the fault server (own development) 

 

The main task of the server is to generate random 

events informing about failures of srk systems. To do 

this, select the "Enable server" button. As a result of 

performing this action, an empty table containing the 

following fields will appear in the main window of the 

application: 

 subsystem 

 device 

 device_type 

 type_element 

 failure_date 

 date_repair 

 time_life 

 activity. 

The user is notified of the current status of the 

simulator with a message in the event log: "The 

TCP/IP server has been enabled" and the "Disable 

server" button is activated (Fig. 10). 

 

Fig. 10. Activation of the server (own development) 

 

Once the server is activated, you can proceed to-

generate faults by selecting the "Random Generator" 

button. The generator window will then be displayed 

(Fig. 11). 

 

Fig. 11. Window Damage generator – exponential distribution 

(own development) 

 

The user should set the following parameters: 

 type of distribution (exponential, normal (Gaussi-

an), log-normal) 

 number of events (in the range from 1 to 100,000) 

 starting date of the period 

 time interval (in years from 1 to 100). 

If a normal (Gaussian) or log-normal distribution is 

selected, the following can be changed: mean value 

and standard deviation in the range from 1–24 h and 

from 1–60 min (Fig. 12). 

Then, after selecting the "Generate List" button,  

a list containing the defects will be generated, with 

their durations as a function described according to an 

assumed distribution (Fig. 13). For this purpose, the 

AMRandom library (by Alan Miller's), distributed on 

an "open source" basis, was used. 
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Fig. 12.Fault generator window – normal (Gaussian) distribution 

 (own development) 

 

Fig. 13. List of generated random events (own study) 

 

The data generated in this way can be transferred 

to the main list of the defect simulator (Fig. 14) by 

selecting the "Transfer list" button. 

 

Fig. 14. List of generated random events in the main window of 

 the simulator (own development) 

 

Another functionality of the "Fault Simulator–

Server" software is to mediate the transfer of infor-

mation about events to the SADEK system database, 

generated by individual clients (railway systems). 

After activating the server (which uses the TCP/IP 

protocol for communication), clients can connect to it, 

and they can start sending messages about the failure 

of srk devices. This information updates the list of 

faults in the application's main window, with the list 

records sorted by the "date_failure" field (Fig. 15). 

The user is given the current number of records that 

are on the list of faults. In addition, a group of buttons 

is provided in the server software that allows changing 

the active item in the list, manually adding, deleting 

and modifying the indicated records. 

 

Fig. 15. Correct defect information obtained from the customer 

 (own study) 

 

If the server receives incorrect data from the client, 

resulting, for example, from incorrect failure and re-

pair dates, such records are displayed in red (Fig. 16). 

Such records must be deleted or modified before ex-

porting the data to the database. The user has an ongo-

ing update of the number of records that are in the 

defect list. 

 

Fig. 16. Incorrect defect information obtained from the customer 

 (own study) 

 

In order to transfer the records contained in the de-

fect table, a connection to the MS SQL database of the 

SADEK system is required. The connection can be 

made without logging monitoring, based on the data 

set during parameterization, or with logging monitor-

ing, during which the user can edit the logging param-

eters.  

After exporting data to the database, the fault list is 

cleared.If the user does not plan to perform another 
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data export, he should disconnect from the SADEK 

database, about which he will be informed by an ap-

propriate message. 

At any time the user can clear the "Log" by select-

ing the "Clear Log" button.  

Figure 17 shows a table of the SADEK database 

with sample records exported by the server. 

 

Fig. 17. Table with exported records to the SADEK database (own 

 compilation) 

3.3. Software "Fault Simulator–Client" 

The "Fault Simulator–Client" software, hereafter 

referred to as the client, provides data exchange be-

tween the srk system and the simulator. For this pur-

pose, it was assumed that each srk system will work 

with a separate client. 

The first activity to be performed after launching 

the client is parameterization. The user must specify 

the IP address and port of the fault simulator server, 

the port of the srk system interface server, as well as 

parameters related to encryption, including: password, 

key size and encryption mode. The parameters can be 

changed only in the state of no connectivity with the 

server. Establishing a connection will block parameter 

editing. After parameterization, select the "Apply" 

button. Then the parameters will be remembered by 

the client software, and thus you will not need to set 

them when you run it again. The parameters are stored 

with an encrypted file, which further increases the 

security of this simulation environment. An example 

of a post-parameterization screen for the client is 

shown in Fig. 18. 

Once the parameterization is done, you can pro-

ceed to try to establish a connection with the fault 

simulator server. To do this, select the "Connect" but-

ton. After connecting to the server, the "Damage" tab 

is activated, and the message "Connected to server: 

..." appears in the "Log" window. In addition, the 

"Connect" button becomes inactive, while the "Dis-

connect" and "Send" buttons become active. The next 

step is to activate the interface of the srk system, 

which is carried out with the "Enable interface" but-

ton. As a result of these actions, the client is ready to 

interact with the traffic control system (Fig. 19). 

 

Fig. 18. View of the "Parameters" tab of the client software (own 

 development) 

 

Fig. 19. View of the client's main window with the client soft-

 ware's "srk system interface" tab active (own development) 

 

All fault messages received from the srk system 

are checked by the client software and automatically 

routed to the server (Fig. 20). 

 

Fig. 20. Customer window with a list of defects received from the 

 srk system (own development) 
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The manual simulation of events is carried out as  

a result of handling the fields located on the "Manual 

editing of events" tab. The user can select from  

a drop-down list: 

 subsystem 

 device 

 device type 

 item type. 

Then he must indicate the failure date and repair 

date. These fields can be changed by editing or by se-

lection. Incorrect indication of the dates leads to the 

message "Repair date earlier than the failure date". The 

last field, "Failure duration," is calculated automatically 

as a result of comparing the failure date and repair date. 

Any change in simulation data leads to an update of the 

message sent to the server, the form of which can be 

observed in the "Explicit message" field. The result of 

an example simulation is shown in Fig. 21. 

 

Fig. 21. View of the tab "Manual editing of events" (own elabora-

 tion) 

 

After editing, the user can send the message to the 

server by selecting the "Send" button. This option is 

available only if the client is connected to the server. 

If the server has the option set to send "echo", the user 

will receive back the message: "Sent message ..." rec-

orded in the "Log" window. 

4. Conclusions 

As a result of the conducted experiments, it has 

been demonstrated that adaptive non-linear signal 

processing schemes, such as neural networks, are 

well-suited for processing measurement data. The 

networks exhibited satisfactory classification accura-

cy. Unfortunately, in the case of the examined ap-

proach (static pattern recognition), the possibility of 

reducing the data necessary for making decisions spe-

cific to the measurement process, which would reduce 

the size of the data stream recorded by the system, did 

not become apparent. Perhaps better results could be 

achieved by applying dynamic classification methods 

and using neural networks with memory architecture. 

The research results were used in the defectoscope car 

and further developed in subsequent solutions [9]. 

The presented research pertains to the recognition 

of only two classes of patterns, but according to the 

authors, with a sufficient amount of classified training 

data, they could be applied in a system that recognizes 

multiple classes. 

In the case of the SADEK project, a prototype sys-

tem for collecting diagnostic data along with their pro-

cessing using inference and prediction software for 

individual railway traffic control systems was obtained. 

The solution presented in the article was one of the 

components of the complex data collection subsystem. 

Through the implementation of physical and software 

solutions of a simulator for the malfunction of railway 

traffic control devices, it was possible to create mal-

function schemes necessary to populate a central data-

base of malfunctions. Such a solution allows for the 

creation of a wide-ranging database of malfunctions 

required in the inference and prediction process. The 

proposed solution serves as the basis for creating an 

integrated diagnostic system for all railway traffic con-

trol devices used by the Polish State Railways. 

 

Nomenclature

IP Internet Protocol Address 

MS-SQL Microsoft SQL Server 

SADEK System for performance data acquisition 

and reliability analysis of railway automat-

ic systems 

srk traffic control system 

SSP  Automatic Crossing Signals 

TCP Transmission Control Protocol  
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